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In a cell or microorganism, the processes that generate mass,
energy, information transfer and cell-fate speci®cation are seam-
lessly integrated through a complex network of cellular constitu-
ents and reactions1. However, despite the key role of these
networks in sustaining cellular functions, their large-scale
structure is essentially unknown. Here we present a systematic
comparative mathematical analysis of the metabolic networks of

43 organisms representing all three domains of life. We show that,
despite signi®cant variation in their individual constituents and
pathways, these metabolic networks have the same topological
scaling properties and show striking similarities to the inherent
organization of complex non-biological systems2. This may indi-
cate that metabolic organization is not only identical for all living
organisms, but also complies with the design principles of robust
and error-tolerant scale-free networks2±5, and may represent a
common blueprint for the large-scale organization of interactions
among all cellular constituents.

An important goal in biology is to uncover the fundamental
design principles that provide the common underlying structure
and function in all cells and microorganisms6±13. For example, it is
increasingly appreciated that the robustness of various cellular
processes is rooted in the dynamic interactions among its many
constituents14±16, such as proteins, DNA, RNA and small molecules.
Scienti®c developments have improved our ability to identify the
design principles that integrate these interactions into a complex
system. Large-scale sequencing projects have not only provided
complete sequence information for a number of genomes, but also
allowed the development of integrated pathway±genome data-
bases17±19 that provide organism-speci®c connectivity maps of
metabolic and, to a lesser extent, other cellular networks. However,
owing to the large number and diversity of the constituents and
reactions that form such networks, these maps are extremely
complex, offering only limited insight into the organizational
principles of these systems. Our ability to address in quantitative
terms the structure of these cellular networks has bene®ted from
advances in understanding the generic properties of complex
networks2.

Until recently, complex networks have been modelled using the
classical random network theory introduced by ErdoÈs and ReÂnyi20,21.
The ErdoÈs±ReÂnyi model assumes that each pair of nodes (that is,
constituents) in the network is connected randomly with prob-
ability p, leading to a statistically homogeneous network in which,
despite the fundamental randomness of the model, most nodes have
the same number of links, hki (Fig. 1a). In particular, the connectiv-
ity follows a Poisson distribution that peaks strongly at hki (Fig. 1b),
implying that the probability of ®nding a highly connected node
decays exponentially (P(k) < e-k for k q hki). On the other hand,
empirical studies on the structure of the World-Wide Web22,
Internet23 and social networks2 have reported serious deviations
from this random structure, showing that these systems are
described by scale-free networks2 (Fig. 1c), for which P(k) follows
a power-law, P(k) < k-g (Fig. 1d). Unlike exponential networks,
scale-free networks are extremely heterogeneous, their topology
being dominated by a few highly connected nodes (hubs) which link
the rest of the less connected nodes to the system (Fig. 1c). As the
distinction between scale-free and exponential networks emerges as
a result of simple dynamical principles24,25, understanding the large-
scale structure of cellular networks can not only provide valuable
and perhaps universal structural information, but could also lead to
a better understanding of the dynamical processes that generated
these networks. In this respect the emergence of power-law dis-
tribution is intimately linked to the growth of the network in which
new nodes are preferentially attached to already established nodes2,
a property that is also thought to characterize the evolution of
biological systems1.

To begin to address the large-scale structural organization of
cellular networks, we have examined the topological properties of
the core metabolic network of 43 different organisms based on data
deposited in the WIT database19. This integrated pathway±genome
database predicts the existence of a given metabolic pathway on the
basis of the annotated genome of an organism combined with ®rmly
established data from the biochemical literature. As 18 of the 43
genomes deposited in the database are not yet fully sequenced, and a
substantial portion of the identi®ed open reading frames are
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functionally unassigned, the list of enzymes, and consequently the
list of substrates and reactions (see Table 1 in Supplementary
Information), will certainly be expanded in the future. Nevertheless,
this publicly available database represents our best approximation
for the metabolic pathways in 43 organisms and provides suf®cient
data for their unambiguous statistical analysis (see Methods and
Supplementary Information).

As we show in Fig. 1e, we ®rst established a graph theoretic
representation of the biochemical reactions taking place in a given
metabolic network. In this representation, a metabolic network is
built up of nodes, the substrates, that are connected to one another
through links, which are the actual metabolic reactions. The
physical entity of the link is the temporary educt±educt complex
itself, in which enzymes provide the catalytic scaffolds for the
reactions yielding products, which in turn can become educts for
subsequent reactions. This representation allows us systematically
to investigate and quantify the topologic properties of various
metabolic networks using the tools of graph theory and statistical
mechanics21.

Our ®rst goal was to identify the structure of the metabolic
networks: that is, to establish whether their topology is best

described by the inherently random and uniform exponential
model21 (Fig. 1a, b), or the highly heterogeneous scale-free model2

(Fig. 1c, d). As illustrated in Fig. 2, our results convincingly indicate
that the probability that a given substrate participates in k reactions
follows a power-law distribution; in other words, metabolic net-
works belong to the class of scale-free networks. As under physio-
logical conditions a large number of biochemical reactions (links) in
a metabolic network are preferentially catalysed in one direction
(the links are directed), for each node we distinguish between
incoming and outgoing links (Fig. 1e). For instance, in
Escherichia coli the probability that a substrate participates as an
educt in k metabolic reactions follows P(k) < k-gin, with gin = 2.2,
and the probability that a given substrate is produced by k different
metabolic reactions follows a similar distribution, with gout = 2.2
(Fig. 2b). We ®nd that scale-free networks describe the metabolic
networks in all organisms in all three domains of life (Fig. 2a±c; see
Supplementary Information, also available at www.nd.edu/,net-
works/cell), indicating the generic nature of this structural organi-
zation (Fig. 2d).

A general feature of many complex networks is their small-world
character26, meaning that any two nodes in the system can be
connected by relatively short paths along existing links. In metabolic
networks these paths correspond to the biochemical pathway
connecting two substrates (Fig. 3a). The degree of interconnectivity
of a metabolic network can be characterized by the network
diameter, de®ned as the shortest biochemical pathway averaged
over all pairs of substrates. For all non-biological networks exam-
ined, the average connectivity of a node is ®xed, which implies that
the diameter of a network increases logarithmically with the addi-
tion of new nodes2,26,27. For metabolic networks this implies that a
more complex bacterium with more enzymes and substrates, such
as E. coli, would have a larger diameter than a simple bacterium,
such as Mycoplasma genitalium. We ®nd, however, that the diam-
eter of the metabolic network is the same for all 43 organisms,
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irrespective of the number of substrates found in the given species
(Fig. 3b). This is unexpected, and is possible only if with increasing
organism complexity individual substrates are increasingly con-
nected to maintain a relatively constant metabolic network dia-
meter. We ®nd that the average number of reactions in which a
certain substrate participates increases with the number of sub-
strates found within a given organism (Fig. 3c, d).

An important consequence of the power-law connectivity dis-
tribution is that a few hubs dominate the overall connectivity of the
network (Fig. 1c), and upon the sequential removal of the most
connected nodes the diameter of the network rises sharply, the
network eventually disintegrating into isolated clusters that are no
longer functional. But scale-free networks also demonstrate unex-
pected robustness against random errors5. To investigate whether
metabolic networks display a similar error tolerance we performed
computer simulations on the metabolic network of E. coli. Upon
removal of the most connected substrates the diameter increases
rapidly, illustrating the special role of these metabolites in main-
taining a constant metabolic network diameter (Fig. 3e). However,
when a randomly chosen M substrates are removedÐmimicking
the consequence of random mutations of catalysing enzymesÐthe
average distance between the remaining nodes is not affected,
indicating a striking insensitivity to random errors. Indeed, in silico
and in vivo mutagenesis studies indicate remarkable fault tolerance
upon removal of a substantial number of metabolic enzymes from
the E. coli metabolic network28. Data similar to those shown in
Fig. 3e have been obtained for all organisms investigated, without
detectable correlations with their evolutionary position.

As the large-scale architecture of the metabolic network rests on

the most highly connected substrates, we need to investigate
whether the same substrates act as hubs in all organisms, or whether
there are organism-speci®c differences in the identity of the most
connected substrates. When we rank all the substrates in a given
organism on the basis of the number of links they have (Table 1; see
Supplementary Information), we ®nd that the ranking of the most
connected substrates is practically identical for all 43 organisms.
Also, only around 4% of all substrates that are found in all 43
organisms are present in all species. These substrates represent the
most highly connected substrates found in any individual organism,
indicating the generic utilization of the same substrates by each
species. In contrast, species-speci®c differences among organisms
emerge for less connected substrates. To quantify this observation,
we examined the standard deviation (sr) of the rank for substrates
that are present in all 43 organisms. As shown in Fig. 3f, sr increases
with the average rank order hri, implying that the most connected
substrates have a relatively ®xed position in the rank order, but the
ranking of less connected substrates is increasingly species-speci®c.
Thus, the large-scale structure of the metabolic network is identical
for all 43 species, being dominated by the same highly connected
substrates, while less connected substrates preferentially serve as the
educts or products of species-speci®c enzymatic activities.

The contemporary topology of a metabolic network re¯ects a
long evolutionary process moulded in general for a robust response
towards internal defects and environmental ¯uctuations and in
particular to the ecological niche occupied by a speci®c organism.
As a result, we would expect that these networks are far from
random, and our data show that the large-scale structural organiza-
tion of metabolic networks is indeed very similar to that of robust
and error-tolerant networks2,5. The uniform network topology
observed in all 43 organisms indicates that, irrespective of their
individual building blocks or species-speci®c reaction pathways, the
large-scale structure of metabolic networks may be identical in all
living organisms, in which the same highly connected substrates
may provide the connections between modules responsible for
distinct metabolic functions1.

A unique feature of metabolic networks, as opposed to non-
biological scale-free networks, is the apparent conservation of the
network diameter in all living organisms. Within the special
characteristics of living systems this attribute may represent an
additional survival and growth advantage, as a larger diameter
would attenuate the organism's ability to respond ef®ciently to
external changes or internal errors. For example, if the concentra-
tion of a substrate were to suddenly diminish owing to a mutation in
its main catalysing enzyme, offsetting the changes would involve the
activation of longer alternative biochemical pathways, and conse-
quently the synthesis of more new enzymes, than within a metabolic
network with a smaller diameter.

How generic are these principles for other cellular networks (for
example, apoptosis or cell cycle)? Although the current math-
ematical tools do not allow unambiguous statistical analysis of the
topology of other networks owing to their relatively small size, our
preliminary analysis indicates that connectivity distribution of non-
metabolic pathways may also follow a power-law distribution,
indicating that cellular networks as a whole are scale-free networks.
Therefore, the evolutionary selection of a robust and error-tolerant
architecture may characterize all cellular networks, for which scale-
free topology with a conserved network diameter appears to provide
an optimal structural organization. M

Methods
Database preparation

For our analyses of core cellular metabolisms we used the `Intermediate metabolism and
bioenergetics' portions of the WIT database19 (http://igweb.integratedgenomics.com/
IGwit/), which predicts the existence of a metabolic pathway in an organism on the basis of
its annotated genome (on the presence of the presumed open reading frame of an enzyme
that catalyses a given metabolic reaction), in combination with ®rmly established data
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from the biochemical literature. As of December 1999, this database provides descriptions
for 6 archaea, 32 bacteria and 5 eukaryotes. The downloaded data were manually
rechecked, removing synonyms and substrates without de®ned chemical identity.

Construction of metabolic network matrices

Biochemical reactions described within a WIT database are composed of substrates and
enzymes connected by directed links. For each reaction, educts and products were
considered as nodes connected to the temporary educt±educt complexes and associated
enzymes. Bidirectional reactions were considered separately. For a given organism with N
substrates, E enzymes and R intermediate complexes the full stoichiometric interactions
were compiled into an (N + E + R) ´ (N + E + R) matrix, generated separately for each of
the 43 organisms.

Connectivity distribution P(k)

Substrates generated by a biochemical reaction are products, and are characterized by
incoming links pointing to them. For each substrate we have determined kin, and prepared
a histogram for each organism, showing how many substrates have exactly kin = 0,1,¼.
Dividing each point of the histogram with the total number of substrates in the organism
provided P(kin), or the probability that a substrate has kin incoming links. Substrates that
participate as educts in a reaction have outgoing links. We have performed the analysis
described above for kin, determining the number of outgoing links (kout) for each substrate.
To reduce noise logarithmic binning was applied.

Biochemical pathway lengths [P(l)]

For all pairs of substrates, the shortest biochemical pathway, P(l) (that is, the smallest
number of reactions by which one can reach substrate B from substrate A) was determined
using a burning algorithm. From P(l) we determined the diameter, D � Sl l×P�l�=SlP�l�,
which represents the average path length between any two substrates.

Substrate ranking hrio, s(r)

Substrates present in all 43 organisms (a total of 51 substrates) were ranked on the basis of
the number of links each had in each organisms, having considered incoming and
outgoing links separately (r = 1 was assigned for the substrate with the largest number of
connections, r = 2 for the second most connected one, and so on). This gave a well de®ned
r value in each organism for each substrate. The average rank hrio for each substrate was
determined by averaging r over the 43 organisms. We also determined the standard
deviation, s(r) = hr2io - hri2o for all 51 substrates present in all organisms.

Analysis of the effect of database errors

Of the 43 organisms whose metabolic network we have analysed, the genomes of 25 have
been completely sequenced (5 archaea, 18 bacteria and 2 eukaryotes), whereas the
remaining 18 are only partially sequenced. Therefore two main sources of possible errors
in the database could affect our analysis: the erroneous annotation of enzymes and,
consequently, biochemical reactions (the likely source of error for the organisms with
completely sequenced genomes); and reactions and pathways missing from the database
(for organisms with incompletely sequenced genomes, both sources of error are possible).
We investigated the effect of database errors on the validity of our ®ndings. The data,
presented in Supplementary Information, indicate that our results are robust to these
errors.
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